The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study.
نویسندگان
چکیده
STUDY DESIGN An in vitro biomechanical investigation in the human lumbar spine focuses on the functional significance of vertebral bone density and intervertebral disc degenerations. OBJECTIVE To determine that interrelationship between vertebral bone density and intervertebral disc degeneration, their effect on normal spine motion, and their significance in the biotechnical performance of interbody fixation techniques. SUMMARY OF BACKGROUND DATA A relationship between vertebral bone density and intervertebral disc degeneration has been suggested, but a definitive relationship has not been established. The effect of vertebral bone density and intervertebral disc degeneration on interbody stabilization remains unknown despite the rapidly increasing use of this surgical method for patients with chronic low back pain. METHODS The vertebral bone density and intervertebral disc degeneration of 72 functional spinal units were determined using dual energy x-ray absorptiometry scans and macroscopic grading, respectively. A three-dimensional flexibility test was performed on 24 functional spinal units in the intact and stabilised conditions. The compressive behavior of the bone-implant interface was evaluated in 48 functional spinal units. RESULTS The vertebral bone density in moderately degenerated disc was significantly lower than at all other levels of intervertebral disc degeneration. Increasing intervertebral disc degeneration resulted in more axial rotation and less lateral bending. In flexion-extension and lateral bending, better vertebral bone resulted in significantly better stabilization. This trend was observed also in axial compression in which higher failure loads were observed with greater bone densities. CONCLUSION The authors conclude a significant relationship exists between bone density and disc degeneration, bone density is a highly important factor in the performance of interbody stabilization, and disc degeneration, is of moderate importance in signal motion.
منابع مشابه
Porous and Bioactive PEEK Implants for Interbody Spinal Fusion
Back and radicular pain is the leading cause of activity and productivity loss amongst adults of any age in the United States [Ref. 1]. In many cases, surgical intervention is required, including at least 5,000 interbody spinal fusion cages implanted each month in the U.S. alone [Ref. 2]. The total U.S. market for spinal fusion implants was valued at nearly $4 billion in 2008 [Ref. 3]. Interbod...
متن کاملPosterior Lumbar Interbody Fusion
Posterior lumbar interbody fusion (PLIF) is a procedure used to treat problems such as disc degeneration, disc herniation, and spine instability. In this procedure, the surgeon works on the spine from the back and removes a spinal disc in the lower (lumbar) spine. The surgeon inserts bone graft material into the space between the two vertebrae where the disc was removed (the interbody space). T...
متن کاملDesign of an Elastic Arthroplastic Disc Optimized under Different Loads
Introduction: Due to limitations of current treatments for degenerative disc disease, arthroplastic methods to repair the diseased disc have been proposed. The artificial disc is a mobile implant for degenerative disc replacement that attempts to lessen the degeneration of the adjacent elements following interbody fusion procedures. Because the success of artificial disc replacement depends on ...
متن کاملThe European multicenter trial on the safety and efficacy of guided oblique lumbar interbody fusion (GO-LIF)
BACKGROUND Because of the implant-related problems with pedicle screw-based spinal instrumentations, other types of fixation have been tried in spinal arthrodesis. One such technique is the direct trans-pedicular, trans-discal screw fixation, pioneered by Grob for spondylolisthesis. The newly developed GO-LIF procedure expands the scope of the Grob technique in several important ways and adds s...
متن کاملTHE EFFECTS OF ANTERIOR DISCECTOMY AND INTERPOSITION AL IMPLANT UPON LUMBAR MOTION SEGMENT STABILITY
The cadaver spine motion segment behavior under torsional load was evaluated with the disc intact, with partial anterior discectomy and with spacer insertion. The results of this study explain how anterior lumbar discectomy and interbody fusion (ALIF) affects the torsional stability of the motion segment. The pseudarthrosis rate of the anterior lumbar discectomy and interbody fusion (ALIF)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Spine
دوره 21 22 شماره
صفحات -
تاریخ انتشار 1996